
MetaGPT开源自动生成智能体工作流,4.55%成本超GPT-4o
MetaGPT开源自动生成智能体工作流,4.55%成本超GPT-4o对于 LLM 从业者来说,让 LLM 落地应用并发挥作用需要手动构建并反复调试 Agentic Workflow,这无疑是个繁琐过程,一遍遍修改相似的代码,调试 prompt,手动执行测试并观察效果,并且换个 LLM 可能就会失效,有高昂的人力成本。许多公司甚至专职招聘 Prompt Engineer 来完成这一工作。
对于 LLM 从业者来说,让 LLM 落地应用并发挥作用需要手动构建并反复调试 Agentic Workflow,这无疑是个繁琐过程,一遍遍修改相似的代码,调试 prompt,手动执行测试并观察效果,并且换个 LLM 可能就会失效,有高昂的人力成本。许多公司甚至专职招聘 Prompt Engineer 来完成这一工作。
是李继刚贯彻 read in prompt out 的七个提示词。
在当前大语言模型(LLM)蓬勃发展的环境下,Prompt工程师们面临着一个两难困境:要么使用像LangChain这样功能强大但学习曲线陡峭的框架,要么选择自动化程度更高DSPy但牺牲了对提示词精确控制的工具。IBM研究院和UC Davis大学最近推出的PDL(Prompt Declaration Language,提示词声明语言)或许打破了这个困境,让AI开发者能真正拿回Prompt的控制权。
Open-Sora-Plan迎来又一次升级。新的Open-Sora-Plan v1.3.0版本引入了五个新特性:性能更强、成本更低的WFVAE;Prompt refiner;高质量数据清洗策略;全新稀疏注意力的DiT,以及动态分辨率、动态时长的支持。
RAG通过纳入外部文档可以辅助LLM进行更复杂的推理,降低问题求解所需的推理深度,但由于文档噪声的存在,其提升效果可能会受限。中国人民大学的研究表明,尽管RAG可以提升LLM的推理能力,但这种提升作用并不是无限的,并且会受到文档中噪声信息的影响。通过DPrompt tuning的方法,可以在一定程度上提升LLM在面对噪声时的性能。
一个「汉语新解」的 prompt 突然爆火。 在 Claude 3.5 里使用这个 prompt 后,输入一个中文词语,AI 会生成一张这个词语的吐槽解释图。Prompt 本身的写法很神奇,使用了伪代码的写法,也让很多人意识到,原来 prompt 可以这么写。
学会与 AI 对话。 这两天,一段 Prompt 在网上火得一塌糊涂。 将Prompt 输入 Claude Sonnet 模型之后,它就能将一个寻常词汇剖析得淋漓尽致。
AI 生成工具出来之后,做内容的确简单太多了:一条 prompt 可以出音乐、出视频,字幕口型也都可以自动配好。剩下的,只要放到平台上,赚播放量分成就行——真·躺着赚钱。
之前介绍了很多在本地部署远程大模型以及本地大模型的教程,但是对于 AI 的使用尤其是如何让 AI 准确理解并执行下达的任务也是一个技术活,所以又诞生了 Prompt 提示词工程这个概念。
上周,iOS 18 测试版发布,部分用户提前试用了苹果在 WWDC 宣布的一系列 Apple Intelligence(苹果智能)的功能,更多的功能会在未来几个月内陆续发布。